2 research outputs found

    Installing the "magic methyl" - C-H methylation in synthesis

    Get PDF
    The selective and efficient C-H methylation of sp2 and sp3 carbon centres has become a powerful transformation in the synthetic toolbox. Due to the potential for profound changes to physicochemical properties attributed to the installation of a "Magic Methyl" group at a strategic site in a lead compound, such techniques have become highly desirable in modern drug discovery and synthesis programmes. This review will cover the diverse techniques that have been employed to enable the selective installation of the C-Me bond in a wide range of chemical structures, from simple building blocks to complex drug-like architectures

    A new organocatalytic desymmetrization reaction enables the enantioselective total synthesis of madangamine E

    No full text
    The enantioselective total synthesis of madangamine E has been completed in 30 steps, enabled by a new catalytic and highly enantioselective desymmetrizing intramolecular Michael addition reaction of a prochiral ketone to a tethered β,β′-disubstituted nitroolefin. This key carbon–carbon bond forming reaction efficiently constructed a chiral bicyclic core in near-perfect enantio- and diastereo-selectivity, concurrently established three stereogenic centers, including a quaternary carbon, and proved highly scalable. Furthermore, the pathway and origins of enantioselectivity in this catalytic cyclization were probed using density functional theory (DFT) calculations, which revealed the crucial substrate/catalyst interactions in the enantio-determining step. Following construction of the bicyclic core, the total synthesis of madangamine E could be completed, with key steps including a mild one-pot oxidative lactamization of an amino alcohol, a two-step Z-selective olefination of a sterically hindered ketone, and ring-closing metatheses to install the two macrocyclic rings
    corecore